Trajectory and Model Studies of Collisions of Highly Excited Methane with Water Using an ab Initio Potential.
نویسندگان
چکیده
Quasi-classical trajectory studies have been performed for the collision of internally excited methane with water using an accurate methane-water potential based on a full-dimensional, permutationally invariant analytical representation of energies calculated at a high level of theory. The results suggest that most energy transfer takes place at impact parameters smaller than about 8 Bohr; collisions at higher impact parameters are mostly elastic. Overall, energy transfer is fairly facile, with values for ⟨ΔEdown⟩ and ⟨ΔEup⟩ approaching almost 2% of the total excitation energy. A classical model previously developed for the collision of internally excited molecules with atoms (Houston, P. L.; Conte, R.; Bowman, J. M. J. Phys. Chem. A 2015, 119, 4695-4710) has been extended to cover collisions of internally excited molecules with other molecules. For high initial rotational levels, the agreement with the trajectory results is quite good (R(2) ≈ 0.9), whereas for low initial rotational levels it is only fair (R(2) ≈ 0.7). Both the model and the trajectories can be characterized by a four-dimensional joint probability distribution, P(J1,f,ΔE1,J2,f,ΔE2), where J1,f and J2,f are the final rotational levels of molecules 1 and 2 and ΔE1 and ΔE2 are the respective changes in internal energy. A strong anticorrelation between ΔE1 and ΔE2 is observed in both the model and trajectory results and can be explained by the model. There is evidence in the trajectory results for a small amount of V ↔ V energy transfer from the water, which has low internal energy, to the methane, which has substantial internal energy. This observation suggests that V ↔ V energy transfer in the other direction also occurs.
منابع مشابه
Ab initio interaction potential of methane and carbon dioxide: Calculation of second-virial coefficient
An interaction potential at different orientation for the CH4 and CO2 complex was derived at theB3LYP level of theory and 6-31+G* basis sets. The potential energy surface was computed on somemolecular geometries. The complete basis set limit of the interaction energies were fitted to wellknownanalytical functions. To determine the second virial coefficients B, U(r) is used to obtain themodel’s ...
متن کاملClassical trajectory study of energy transfer in collisions of highly excited allyl radical with argon.
Predicting the results of collisions of polyatomic molecules with a bath of atoms is a research area that has attracted substantial interest in both experimental and theoretical chemistry. Energy transfer, which is the consequence of such collisions, plays an important role in gas-phase kinetics and relaxation of excited molecules. We present a study of energy transfer in single collisions of h...
متن کاملDynamics of the O(3P) + CHD3(vCH = 0,1) reactions on an accurate ab initio potential energy surface.
Recent experimental and theoretical studies on the dynamics of the reactions of methane with F and Cl atoms have modified our understanding of mode-selective chemical reactivity. The O + methane reaction is also an important candidate to extend our knowledge on the rules of reactivity. Here, we report a unique full-dimensional ab initio potential energy surface for the O((3)P) + methane reactio...
متن کاملAb initio Study of Simple Mg-Ene Reactions of Propenyl Magnesium Halides and Ethylene (Type-I Intermolecular Reaction)
The insertion of an olefinic C=C bond into a metal-carbon bond is of potential interest as a preparativeroute to new products and as results of C-C coupling reactions to organic compounds. The allyl compoundsof Mg, react with an olefin by inversion of the allyl group via a six center transition state. These precyclicreactions may be one of the most important classes of organic reactions. The re...
متن کاملAb Initio Studies of Rotation and Solvent Effects for two important membrane molecules: DPPC and DMPC
DPPC (dipalmitoylphosphatidylcholine) and DMPC (dimyristoylphosphatidylcholine) are taken asphospholipids with an equal polar heads and with the difference in the length of hydrocarbonchains. Results obtain from the structural optimization of the isolated DPPC and DMPC in the gasphase, at the Hartree-Fock level of theory by means of STO-3g,3-21G, 6-31G and 6-31G* basissets. the most important d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. A
دوره 119 50 شماره
صفحات -
تاریخ انتشار 2015